Part I: Multiple Choice. Circle the correct answer.

1. If
$$f(x) = \sqrt{4 \sin x + 2}$$
, then $f'(0) =$

C. 1 D.
$$\frac{2}{\sqrt{2}}$$
 E. $\frac{\sqrt{2}}{2}$

E.
$$\frac{\sqrt{2}}{2}$$

For # 2 and 3 use the following information:

Let f and g be differentiable functions such that f(2) = 5 f'(6) = -2 f'(2) = -5

$$f(2) = 5$$

$$f'(6) = -2$$

$$f'(2) = -5$$

$$g(2) = \epsilon$$

$$g(2) = 6$$
 $g'(2) = -4$ $g'(6) = 4$

$$g'(6) = 4$$

2. If
$$h(x) = f(g(x))$$
, then $h'(2) =$

3. If
$$j(x) = \frac{f(x)}{g(x)}$$
, find $j'(2)$.

A.
$$-\frac{5}{2}$$

C.
$$-\frac{5}{18}$$

D.
$$\frac{5}{4}$$

A.
$$-\frac{5}{4}$$
 B. 0 C. $-\frac{5}{18}$ D. $\frac{5}{4}$ E. undefined

4. Given
$$f(x) = \frac{1}{x} + 6x - 5$$
, find $f'(1)$.

$$C = 5$$

5. The equation of the line tangent to the curve $y = \frac{kx+8}{x+k}$ at x = -2 is = x + 4. What is the value of k?

A. -3 B. -1

C. 1

D. 3

E. 4

$$\frac{1-x}{6. \text{ If } y = \frac{1-x}{x-1}, \text{ then } \frac{dy}{dx} = \frac{1-x}{x-1}$$

A. -1

B. 0

 $\frac{-1}{C_{-}}$ $\frac{-2}{x-1}$ D_{-} $\frac{-2}{x-1}$

7. Let f(x) be a continuous and differentiable function. The table below gives the value of f(x) and f'(x) at several values. If $g(x) = \frac{1}{f(x)}$, what is the value of g'(2)?

X	1	2	3	4
f(x)	-3	-8	-9	0
f'(x)	-5	-4	3	16

A. $\frac{1}{16}$ B. 0

E. undefined

8. If
$$y = (2x^2 + 1)^4$$
, then $\frac{dy}{dx} =$

A. $16x^3$ B. $4(2x^2+1)^3$ C. $4x(2x^2+1)^3$ D. $16(2x^2+1)^3$

E. $16x(2x^2+1)^3$

Part II: Show all work and keep it organized.

9. Find the equation of the tangent line to the graph of y(x) = cosx + tan(2x) at x = 0.

- 10. Given $V = \frac{3}{4}\pi r^3$, find $\frac{dV}{dr}$ and then find $\frac{dV}{dr}\Big|_{r=2}$
- 11. Find the derivative of $f(x) = x^2 x$ the long way. Use limits and h notation and show all work.

12. If $y = \csc x$, find y' and y''.

- 13. Let $y = x^2 + 1$.
 - a. Find the average rate of change of y with respect to x over the interval [2, 6]. Show work.
 - b. Find the instantaneous rate of change of y with respect to x when x = -3. Show work.

In #14-19, find the derivative of each function. 14. $y = 6x^5 - x + 10$

$$14. \ y = 6x^5 - x + 10$$

15.
$$y = 10 \cot(2x - 1)$$

16.
$$y = 5x^{-7}$$

17.
$$f(x) = cos^3(2x^4)$$

18.
$$p(x) = (x^2 - 5)(3x^{-2} + x^{-3})$$

19.
$$h(x) = (2x - 7)^4(x^2 + 3)$$

Suppose that functions f and g and their derivatives have the following values at x = 2 and x = 3.

X	f(x)	g(x)	f'(x)	g'(x)
2	8	2	$\frac{1}{3}$	-3
3	3	-4	2π	5

21. If
$$k(x) = f(x) \cdot g(x)$$
, find $k'(3)$.

22. If
$$j(x) = \sqrt{f(x)}$$
, find $j'(2)$.

23. a. Determine if
$$f(x) = \begin{cases} x^2 - 4, & x \le 2 \\ \frac{3}{2}x - 3, & x > 2 \end{cases}$$
 is continuous at $x = 2$. Show detailed work.

b. Determine if f(x) is differentiable at x = 2. Show detailed work.